Respuesta :

Answer:

The measure of the side DE is  [tex]\frac{7}{3}[/tex] unit  .

Step-by-step explanation:

Given as Δ ABC  and  Δ ADE are similar :

The measure of side AB = 6  unit

The measure of side BD = 4  unit

The measure of side BC = 7  unit

Let The measure of side DE = x  unit

From The property of similar triangle

[tex]\dfrac{\textrm The measure of side AB}{\textrm The measure of side AD}[/tex] = [tex]\dfrac{\textrm The measure of side BC}{\textrm The measure of side DE}[/tex]

or. [tex]\dfrac{\textrm 6}{\textrm AB - AD}[/tex] = [tex]\dfrac{\textrm 7}{\textrm x }[/tex]

or, . [tex]\dfrac{\textrm 6}{\textrm 6 - 4}[/tex] = [tex]\dfrac{\textrm 7}{\textrm x }[/tex]

Or,  [tex]\dfrac{\textrm 6}{\textrm 2}[/tex] = [tex]\dfrac{\textrm 7}{\textrm x }[/tex]

or, 3 × x = 7

∴  x = [tex]\frac{7}{3}[/tex]

Hence the measure of the side DE is  [tex]\frac{7}{3}[/tex] unit  . answer