The acceleration, initial velocity, and initial position of a particle traveling through space are given by by a(t) = (2, −6, −4), v(0) = (−5, 1, 3), r(0) = (6, −2, 1). The particle’s trajectory intersects the yz plane exactly twice.Find these two intersection points. (Order your answers from smallest to largest x, then from smallest to largest y.)

Respuesta :

Answer:

(0,-26,-8) and (0,-12,-1)

Step-by-step explanation:

a(t) = [tex]\frac{d}{dt}[/tex](v(t))

⇒[tex]\int\limits^t_0 dv(t)[/tex] = [tex]\int\limits^t_0 {a} \, dt[/tex]

Integration of a vector is simultaneous integration of each of its components:

⇒v(t) - v(0) = (2t, -6t, -4t)

⇒v(t) = (2t-5, -6t+1, -4t+3)

v(t) = [tex]\frac{d}{dt}[/tex](r(t))

⇒[tex]\int\limits^t_0 dr(t)[/tex] = [tex]\int\limits^t_0 {v} \, dt[/tex]

r(t) - r(0) = ([tex]t^{2}[/tex]-5t, -3[tex]t^{2}[/tex]+t, -2[tex]t^{2}[/tex]+3t)

⇒r(t) = ([tex]t^{2}[/tex]-5t+6, -3[tex]t^{2}[/tex]+t-2, -2[tex]t^{2}[/tex]+3t+1)

when the particle intersects the yz plane, it's x-coordinate is 0

⇒[tex]t^{2}[/tex]-5t+6=0

⇒[tex]t^{2}[/tex]-2t-3t+6=0

⇒t·(t-2)-3·(t-2)=0

⇒(t-2)·(t-3)=0

Particle hits the yz plane at t=2 and t=3.

r(2) = ([tex]2^{2}[/tex]-5·2+6, -3·[tex]2^{2}[/tex]+2-2, -2·[tex]2^{2}[/tex]+3·2+1)

r(2) = (0,-12,-1)

r(3) = ([tex]3^{2}[/tex]-5·3+6, -3·[tex]3^{2}[/tex]+3-2, -2·[tex]3^{2}[/tex]+3·3+1)

r(3) = (0,-26,-8)

x(2) = x(3) =0

y(3) = -26 is less than -12 = y(2)

∴The two intersection points with yz plane are (0,-26,-8) and (0,-12,-1)