Respuesta :
Answer:
1. [tex]\approx 10 \ cm^2[/tex]
2. [tex]304.5 \ cm^2[/tex]
3. 1:3
4. 3:4
5. 10,000 pounds
6. 36 in
Step-by-step explanation:
1. What is the area of the triangle with a base of 5 1/2 cm and a height of 3 1/2 cm?
The area of the triangle can be calculated using formula
[tex]A=\dfrac{1}{2}\times \text{Base}\times \text{Height}[/tex]
Given:
Base [tex]=5\dfrac{1}{2}=\dfrac{11}{2}\ cm[/tex]
Height [tex]=3\dfrac{1}{2}=\dfrac{7}{2}\ cm[/tex]
Hence,
[tex]A=\dfrac{1}{2}\cdot \dfrac{11}{2}\cdot \dfrac{7}{2}\\ \\=\dfrac{77}{8}\\ \\=9.625 \ cm^2\approx 10\ cm^2[/tex]
2. What is the area of a parallelogram with a base of 14.5 m and a height of 21 m?
The area of the parallelogram can be calculated using formula
[tex]A=\times \text{Base}\times \text{Height}[/tex]
Given:
Base [tex]=14.5\ cm[/tex]
Height [tex]=21\ cm[/tex]
Hence,
[tex]A=14.5\cdot 21\\ \\=304.5 \ cm^2[/tex]
3. The cafeteria sold 200 grilled cheese sandwiches, 100 tacos, and 150 grilled chicken salads. What is the ratio in simplest terms of grilled chicken salads sold to the total number of lunches sold?
Cafeteria sold:
- 200 grilled cheese sandwiches;
- 100 tacos;
- 150 grilled chicken salads;
- 200 + 100 + 150 = 450 lunches in total.
The ratio of grilled chicken salads sold to the total number of lunches sold is
[tex]150:450[/tex]
In simpliest form
[tex]150:450=(150\cdot 1): (150\cdot 3)=1:3[/tex]
4. What is the ratio of odd to even digits in the following number: 7,208,631?
There are
- even digits 2, 0, 8, 6 - 4 digits;
- odd digits 7, 3, 1 - 3 digits.
The ratio of odd to even digits is
[tex]\text{Number of odd digits}:\text{Number of even digits}=3:4[/tex]
5. 1 ton = 2,000 pounds
5 tons [tex]=5 \ tons \cdot 2,000\ \dfrac{pounds}{ton}=10,000\ pounds[/tex]
6. 1 feet = 12 inches
[tex]3\ ft=3\ ft\cdot 12\ \dfrac{in}{ft}=36\ in[/tex]