Beka and Melanie have 28 coins that are nickels and dimes. If the value of the coins is 1.95, how many nickels do they have ?

Respuesta :

Answer:

Beka and Melannie have 17 nickels.

Step-by-step explanation:

Given:

Total number of nickels ans dimes =28

Total value of coins = $1.95

To find number of nickels.

Let number of nickels be = [tex]n[/tex]

So, number of dimes = [tex]Total\ coins\ -\ nickels=(28-n)[/tex]

1 nickel = $0.05

Value of [tex]n[/tex] nickels in dollars = [tex]0.05\times n =0.05\ n[/tex]

1 dime = $0.10

Value of [tex](28-n)[/tex] dimes in dollars =[tex]0.10(28-n)=2.8-0.1\ n[/tex]

Total value of nickels and dimes in dollars =[tex]0.05\ n+2.8-0.1\ n=2.8-0.05\ n[/tex]

So we have:

[tex]2.8-0.05\ n=1.95[/tex]

Subtracting 2.8 from both sides.

[tex]2.8-2.8-0.05\ n=1.95-2.8[/tex]

[tex]-0.05\ n=-0.85[/tex]

dividing both sides by -0.05

[tex]\frac{-0.05\ n}{-0.05}=\frac{-0.85}{-0.05}[/tex]

∴ [tex]n=17[/tex]

Beka and Melannie have 17 nickels.