Answer:
The p-value for this test is 0.3576 using the travel’s agent theory with a hypothesis test.
Explanation:
To calculate p-value for this test, we need a test statistic which can be obtained if we know the sample proportion.
[tex]\text { So, sample proportion, } \hat{p}=\frac{x}{n}[/tex]
[tex]\text { Where } x=\text { the people who have taken cruise within } 1 \text { year }=3, \text { and } n=\text { sample size }=100[/tex]
[tex]\text { Now, } \hat{p}=\frac{3}{100}=0.03[/tex]
[tex]\text { Now test statistic, } z=\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}[/tex]
[tex]Z=\frac{0.03-0.05}{\sqrt{\frac{0.05(1-0.05)}{100}}}[/tex]
[tex]z=-0.92[/tex]
[tex]\text { Here, } \mathrm{p}=\text { hypothesis test }=0.05[/tex]
[tex]\text { Therefore, p-value for this test }=2 \times \text { NORMDIST(- } 0.92)[/tex]
[tex]\text { p-value for this test }=2 P(z<-0.92)[/tex]
[tex]\text { p-value for this test }=0.3576[/tex]
Hence, the p-value for this test is 0.3576 using the travel’s agent theory with a hypothesis test.