Respuesta :
Answer:
1) [tex]\Delta L= 0.612\ m[/tex]
2) a. [tex]\Delta V_G=0.57\ L[/tex]
b. [tex]\Delta V_S=0.021\ L[/tex]
c. [tex]V_0=0.549\ L[/tex]
Explanation:
1)
- given initial length, [tex]L=1275\ m[/tex]
- initial temperature, [tex]T_i=-15^{\circ}C[/tex]
- final temperature, [tex]T_f=25^{\circ}C[/tex]
- coefficient of linear expansion, [tex]\alpha=12\times 10^{-6}\ ^{\circ}C^{-1}[/tex]
∴Change in temperature:
[tex]\Delta T=T_f-T_i[/tex]
[tex]\Delta T=25-(-15)[/tex]
- [tex]\Delta T=40^{\circ}C[/tex]
We have the equation for change in length as:
[tex]\Delta L= L.\alpha. \Delta T[/tex]
[tex]\Delta L= 1275\times 12\times 10^{-6}\times 40[/tex]
[tex]\Delta L= 0.612\ m[/tex]
2)
Given relation:
[tex]\Delta V=V.\beta.\Delta T[/tex]
where:
[tex]\Delta V[/tex]= change in volume
V= initial volume
[tex]\Delta T[/tex]=change in temperature
- initial volume of tank, [tex]V_{Si}=60\ L[/tex]
- initial volume of gasoline, [tex]V_{Gi}=60\ L[/tex]
- initial temperature of steel tank, [tex]T_{Si}=15^{\circ}C[/tex]
- initial temperature of gasoline, [tex]T_{Gi}=15^{\circ}C[/tex]
- coefficients of volumetric expansion for gasoline, [tex]\beta_G=950\times 10^{-6}\ ^{\circ}C[/tex]
- coefficients of volumetric expansion for gasoline, [tex]\beta_S=35\times 10^{-6}\ ^{\circ}C[/tex]
a)
final temperature of gasoline, [tex]T_{Gf}=25^{\circ}C[/tex]
∴Change in temperature of gasoline,
[tex]\Delta T_G=T_{Gf}-T_{Gi}[/tex]
[tex]\Delta T_G=25-15[/tex]
[tex]\Delta T_G=10^{\circ}C[/tex]
Now,
[tex]\Delta V_G= V_G.\beta_G.\Delta T_G[/tex]
[tex]\Delta V_G=60\times 950\times 10^{-6}\times 10[/tex]
[tex]\Delta V_G=0.57\ L[/tex]
b)
final temperature of tank, [tex]T_{Sf}=25^{\circ}C[/tex]
∴Change in temperature of tank,
[tex]\Delta T_S=T_{Sf}-T_{Si}[/tex]
[tex]\Delta T_S=25-15[/tex]
[tex]\Delta T_S=10^{\circ}C[/tex]
Now,
[tex]\Delta V_S= V_S.\beta_S.\Delta T_S[/tex]
[tex]\Delta V_S=60\times 35\times 10^{-6}\times 10[/tex]
[tex]\Delta V_S=0.021\ L[/tex]
c)
Quantity of gasoline spilled after the given temperature change:
[tex]V_0=\Delta V_G-\Delta V_S[/tex]
[tex]V_0=0.57-0.021[/tex]
[tex]V_0=0.549\ L[/tex]