In a sample of 83 walking canes, the average length was found to be 34.9in. with a standard deviation of 1.5. Give a point estimate for the population standard deviation of the length of the walking canes. Round your answer to two decimal places, if necessary.

Respuesta :

Answer:

The point estimate for the population standard deviation of the length of the walking canes is 0.16.

Step-by-step explanation:

The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], a large sample size can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\frac{\sigma}{\sqrt{n}}[/tex].

In this problem

The point estimate of the standard deviation is the standard deviation of the sample.

In a sample of 83 walking canes, the average length was found to be 34.9in. with a standard deviation of 1.5. By the Central Limit Theorem, we have that:

[tex]s = \frac{1.5}{\sqrt{83}} = 0.16[/tex]

The point estimate for the population standard deviation of the length of the walking canes is 0.16.