Respuesta :

The radius of the bowl R as a function of the angle theta is [tex]\mathrm{R}=\frac{3}{1-\sin \theta}[/tex]

Solution:

The figure is attached below

If we consider the centre of hemisphere be A

The radius be AC and AD

According to question,  

A bowl in the shape of a hemispere is filled with water to a depth h=3 inches .i.e. BC = h = 3 inches

And radius of the bowl is R inches .i.e. R = AD =AC

Now , using  trigonometric identities in triangle ABD we get

[tex]\sin \theta=\frac{\text { Perpendicular }}{\text { Hypotenuse }}=\frac{A B}{A D}[/tex]

[tex]\begin{array}{l}{\sin \theta=\frac{A B}{R}} \\\\ {A B=R \sin \theta}\end{array}[/tex]

Since , AC = AB + BC

R = R Sinθ + 3

R - R Sinθ = 3

R (1 – Sinθ ) = 3

[tex]\mathrm{R}=\frac{3}{1-\sin \theta}[/tex]

Which is the required expression for the radius of the bowl R as a function of the angle theta

Ver imagen iwillanswer
Ver imagen iwillanswer