Consider the following function. f(x) = ln(1 + 2x), a = 4, n = 3, 3.7 ≤ x ≤ 4.3
(a) Approximate f by a Taylor polynomial with degree n at the number a. T3(x) = Correct: Your answer is correct.
(b) Use Taylor's Inequality to estimate the accuracy of the approximation f(x) ≈ Tn(x) when x lies in the given interval. (Round your answer to six decimal places.) |R3(x)| ≤ 0.000003 Incorrect: Your answer is incorrect.
(c) Check your result in part
(b) by graphing |Rn(x)|.

Respuesta :

Answer:

a) [tex]\sum_{n=0}^{3} \frac{f^{(n)}(x)}{n!} (x-a)^n =ln(9)+\frac{2}{9}(x-4)-\frac{2}{81}(x-4)^2 +\frac{8}{2187}(x-4)^3[/tex]

b) [tex]R_3 (x)=|f_n (x)-T_3 (x)|\leq \frac{0.019282}{4!}(3.7)^4 =0.150573[/tex]

Step-by-step explanation:

1) Part a

[tex]f(x)=ln(1+2x)[/tex] [tex]a=4,n=3[/tex]

The Taylor's approximation would be given byt this formula

[tex]\sum_{n=0}^{\infty} \frac{f^{(n)}(x)}{n!} (x-a)^n[/tex]   (1)

Since we need the approximation T3 we just need to use this formula:

[tex]\sum_{n=0}^{3} \frac{f^{(n)}(x)}{n!} (x-a)^n[/tex]   (2)

So now we proceed to find the terms for the T3 approximation:

[tex]f(4)=ln(1+8)= ln(9)[/tex]

[tex]f'(x)=\frac{2}{1+2x}[/tex]  [tex]f'(4)=\frac{2}{1+8}=-\frac{2}{9}[/tex]

[tex]f''(x)=-\frac{4}{(1+2x)^2}[/tex]  [tex]f''(4)=\frac{-4}{(1+8)^2}=-\frac{4}{81}[/tex]

[tex]f'''(x)=\frac{16}{(1+2x)^3}[/tex]  [tex]f'''(4)=\frac{16}{(1+8)^3}=-\frac{16}{729}[/tex]

So then using equation (2) we have

[tex]\sum_{n=0}^{3} \frac{f^{(n)}(x)}{n!} (x-a)^n =ln(9)+\frac{2}{9}(x-4)-\frac{2}{81}(x-4)^2 +\frac{8}{2187}(x-4)^3[/tex]

2) Part b

We can estimate the accuracy of the approximation [tex]|f(x)\approxT_3 (x)|[/tex] with the Taylor's inequality given by:

[tex]R_n (x)=|f(x)\approxT_3 (x)|\leq \frac{M}{4!}(x-4)^4[/tex]  (3)

On this case M is such that [tex]|f^{(4)} (x)|\leq M[/tex] for [tex]3.7\leq x\leq4.3[/tex]

So we have:

 [tex]|f^{(4)} (x)|=\frac{96}{(1+2x)^4}\leq \frac{96}{[1+2(3.7)]^4}=\frac{96}{4978.7136}=0.019282[/tex]

Based on this we can take [tex]M=0.019282[/tex] and

[tex]|x-4|\leq3.7[/tex] so then [tex]|x-4|^4 \leq(3.7)^4[/tex]

So using equation (3) we got that

[tex]R_3 (x)=|f_n (x)-T_3 (x)|\leq \frac{0.019282}{4!}(3.7)^4 =0.150573[/tex]

3) Part c

In order to plot [tex]R_3 (x)[/tex] we just need to plot:

[tex]R_n (x)\leq \frac{0.019282}{4!}|x-4|^4[/tex]

And the graph obtained is attached below.

Ver imagen dfbustos