Answer:
v₃ = (10) i + (10) j
v₃ = 10√2
Explanation:
Given info
Before the explosion
ux = 0
uy = 0
After the explosion
v₁x = -30
v₁y = 0
v₂x = 0
v₂y = -30
We can use the Principle of Conservation of Momentum as follows
pi = pf
where
pix = M*ux = M*0 = 0
piy = M*uy = M*0 = 0
pfx = p₁x + p₂x + p₃x = (m*v₁x + m*v₂x + 3m*v₃x) = m*(-30) + m*(0) + 3m*v₃x
⇒ pfx = -30m + 3m*v₃x
if
pix = pfx ⇒ 0 = -30m + 3m*v₃x ⇒ v₃x = 10
pfy = p₁y + p₂y + p₃y = (m*v₁y + m*v₂y + 3m*v₃y) = m*(0) + m*(-30) + 3m*v₃y
⇒ pfy = -30m + 3m*v₃y
if
piy = pfy ⇒ 0 = -30m + 3m*v₃y ⇒ v₃y = 10
then we have
v₃ = (10) i + (10) j
and its module can be obtained as follows
v₃ = √(v₃x² + v₃y²) = √(10² + 10²) = 10√2