Respuesta :

Answer:

Factorization of [tex]P(x)=(x+2)(2x+1)(3x-1)[/tex]

Step-by-step explanation:

Given:

The given polynomial is [tex]P(x)=6x^3+13x^2+x-2[/tex]

Also, [tex]P(-2)=0[/tex]

Since, for [tex]x=-2[/tex], [tex]P(x)[/tex] is 0, therefore, [tex]x+2[/tex] is a factor of the polynomial.

Now, let us divide the given polynomial by [tex]x+2[/tex] using long division method. Therefore,

[tex]\frac{6x^3+13x^2+x-2}{x+2}=6x^2+x-1[/tex]

The process of long division is shown below.

Now, factoring the quotient [tex]6x^2+x-1[/tex], we get

[tex]6x^2+x-1=6x^2+3x-2x-1=3x(2x+1)-1(2x+1)=(3x-1)(2x+1)[/tex]

Therefore, the factors of polynomial [tex]P(x)[/tex] are [tex](x+2),(2x+1),\ and\ (3x-1)[/tex]

Hence, the factorization of [tex]P(x)[/tex] is:

[tex]P(x)=(x+2)(2x+1)(3x-1)[/tex]

Ver imagen DarcySea