Respuesta :

Answer

Solution:

p = 79

n = 52

Step-by-step explanation:

Given equations:

A) [tex]p+n=131[/tex]

B) [tex]p+3.26n=248.52[/tex]

To solve for  [tex]p[/tex] and [tex]n[/tex]

Naming the first equation as A and second as B.

Using elimination method to solve.

In order to eliminate [tex]p[/tex] we subtract equation A from B.

Subtracting A from B i.e [[tex]B-A[/tex]

  (B) [tex]p+3.26n=248.52[/tex]  

- (A)  [tex]p+n=131[/tex]

We get,  [tex]3.26n-n=248.52-131[/tex]

[tex]2.26n=117.52[/tex]

Dividing both sides 2.26.

[tex]\frac{2.26n}{2.26}=\frac{117.52}{2.26}[/tex]

∴ [tex]n=52[/tex]

We can solve for [tex]p[/tex] by substituting [tex]n=52[/tex] in equation A.

[tex]p+52=131[/tex]

Subtracting both sides by 52.

[tex]p+52-52=131-52[/tex]

∴ [tex]p=79[/tex]