Answer
Solution:
p = 79
n = 52
Step-by-step explanation:
Given equations:
A) [tex]p+n=131[/tex]
B) [tex]p+3.26n=248.52[/tex]
To solve for [tex]p[/tex] and [tex]n[/tex]
Naming the first equation as A and second as B.
Using elimination method to solve.
In order to eliminate [tex]p[/tex] we subtract equation A from B.
Subtracting A from B i.e [[tex]B-A[/tex]
(B) [tex]p+3.26n=248.52[/tex]
- (A) [tex]p+n=131[/tex]
We get, [tex]3.26n-n=248.52-131[/tex]
[tex]2.26n=117.52[/tex]
Dividing both sides 2.26.
[tex]\frac{2.26n}{2.26}=\frac{117.52}{2.26}[/tex]
∴ [tex]n=52[/tex]
We can solve for [tex]p[/tex] by substituting [tex]n=52[/tex] in equation A.
[tex]p+52=131[/tex]
Subtracting both sides by 52.
[tex]p+52-52=131-52[/tex]
∴ [tex]p=79[/tex]