Like He, the Li2+ ion is a single-electron system (Problem 5.94). What wavelength of light in nm must be absorbed to
promote the electron in Li2+ from n = 1 to n = 4?​

Respuesta :

Answer:[tex]1.08\times 10^{-8}m[/tex]

Explanation:

Let [tex]E_{n}[/tex] be the energy of the electron in [tex]n[/tex]th orbit.

According to Bohr's model,

[tex]E_{n}=\frac{-kz^{2}}{n^{2}}[/tex]

where [tex]k=2.179\times 10^{-18}J[/tex]

[tex]Z[/tex] is the atomic number

[tex]n[/tex] is the orbit number.

Given,[tex]z=3[/tex]

Energy required for transition from [tex]n=1[/tex] to [tex]n=4[/tex] is [tex]\frac{k(3)^{2}}{1^{2}}-\frac{k(3)^{2}}{4^{2}}=\frac{15k\times 9}{16} =18.38\times 10^{-18}J[/tex]

Since,wave length is [tex]\frac{hc}{E}[/tex]

where [tex]h[/tex] is the plancks constant.

[tex]c[/tex] is the speed of light.

[tex]c=3\times 10^{8}\\h=6.63\times 10^{-34}m^{2}KgS^{-1}[/tex]

So,wave length is [tex]\frac{6.63\times 10^{-34} \times 3\times 10^{8}}{18.38\times 10^{-18}} =1.08\times 10^{-8}m[/tex]