Flying against the wind, an airplane travels 2750 kilometers in 5 hours. Flying with the wind, the same plane travels 6090 kilometers in 7 hours. What is the rate
of the plane in still air and what is the rate of the wind?
Rate of the plane in still air:
Ola
1x
S
?
Rate of the wind:​

Respuesta :

Answer:

The rate of airplane in still air [tex]=710\ km\ hr^{-1}[/tex]

The rate of the wind is  [tex]=160\ km \ hr^{-1}[/tex]

Step-by-step explanation:

Let the speed of the airplane be [tex]s_{a}[/tex]

And the speed of the wind be  [tex]s_{w}[/tex]

So we know that, [tex]Speed = \frac{distance}{time}[/tex]

According to the question.

When the airplane is flying with the wind it will be supported by the wind.

So the speed, [tex]=s_{w}+s_{a} =\frac{6090}{7}[/tex]  

                       [tex]=s_{w}+s_{a} =870[/tex]

                       [tex]=s_{w}=870-s_{a}[/tex]...   equation (1)

                       

When the airplane is flying with against the wind it will be negated by the wind.

Then the speed , [tex]=s_{a}-s_{w}=\frac{2750}{5}[/tex]...   equation (2)

 Plugging the values from equation (1)....

                             [tex]=s_{a}-(870-s_{a})=550[/tex]

                             [tex]=2s_{a}=550+870[/tex]

                             [tex]=2s_{a}=\frac{550+870}{2}=710[/tex]

So rate of airplane in still air [tex]=710\ km\ per\ hr[/tex]

Now to find the rate of wind we can plug the values of rate of airplane in equation (1).

Then we have

                        [tex]=s_{w}+s_{a} =870[/tex]

                        [tex]=s_{w}=870-710=160[/tex]

So the rate of the wind that is  [tex]=s_{w}=160\ km\ per \hr[/tex]

The rate of airplane in still air [tex]=710\ km\ per\ hr[/tex] and rate of the wind is  [tex]=s_{w}=160\ km\ per\ \hr[/tex]