Respuesta :

Answer:

Part 11) The table represent a direct variation. The equation is [tex]y=18x[/tex]

Part 12) The table represent a direct variation. The equation is [tex]y=0.4x[/tex]

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]y/x=k[/tex] or [tex]y=kx[/tex]

In a proportional relationship the constant of proportionality k is equal to the slope m of the line and the line passes through the origin

Part 11)

For x=0.5, y=9

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=9/0.5=18[/tex]

For x=3, y=54

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=54/3=18[/tex]

For x=-2, y=-36

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=-36/-2=18[/tex]

For x=1, y=18

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=18/1=18[/tex]

For x=-8, y=-144

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=-144/-8=18[/tex]

The values of k is the same for each ordered pair

therefore

The table represent a direct variation

The linear equation is

[tex]y=18x[/tex]

Part 12)

For x=-5, y=-2

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=-2/-5=2/5=0.40[/tex]

For x=3, y=1.2

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=1.2/3=0.40[/tex]

For x=-2, y=-0.8

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=-0.8/-2=0.4[/tex]

For x=10, y=4

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=4/10=0.4[/tex]

For x=20, y=8

Find the value of k

[tex]k=y/x[/tex] -----> [tex]k=8/20=0.4[/tex]

The values of k is the same for each ordered pair

therefore

The table represent a direct variation

The linear equation is

[tex]y=0.4x[/tex]