The perimeter of equilateral triangle ABC is 81/3 centimeters, find the length of the radius and apothem.
The radius of equilateral triangle ABC is
The apothem of equilateral triangle ABC is

Respuesta :

There is a typo error, the perimeter of equilateral triangle ABC is 81/√3 centimeters.

Answer:

Radius = OB= 27 cm

Apothem = 13.5 cm

A diagram is attached for reference.

Step-by-step explanation:

Given,

The perimeter of equilateral triangle ABC is 81/√3 centimeters.

Substituting this in the formula of perimeter of equilateral triangle =[tex]3\times\ side[/tex]

[tex]3\times\ side[/tex] [tex]=[tex]81\sqrt{3}[/tex]

[tex]Side = \frac{81\sqrt{3} }{3} =27\sqrt{3} \ cm[/tex]

Thus from the diagram , Side [tex]AB=BC=AC= 27\sqrt{3} \ cm[/tex]

We know each angle of an equilateral triangle is 60°.

From the diagram, OB is an angle bisector.

Thus [tex]\angle OBC = 30[/tex]°

Apothem is the line segment from the mid point of any side to the center the equilateral triangle.

Therefore considering ΔOBE, and applying tan function.

[tex]tan\theta =\frac{perpendicular}{base} \\tan\theta=\frac{OE}{BE} \\tan\theta=\frac{OE}{\frac{27\sqrt{3}}{2}  } \\tan30\times {\frac{27\sqrt{3} }{2} }= OE\\\frac{1}{\sqrt{3} } \times\frac{27\sqrt{3} }{2} =OE\\[/tex]

Thus ,apothem  OE= 13.5 cm

Now for radius,

We consider ΔOBE

[tex]cos\theta=\frac{base}{hypotenuse} \\cos30= \frac{BE}{OB} \\Cos30 = \frac{\frac{27\sqrt{3} }{2}}{OB}  \\OB= \frac{\frac{27\sqrt{3} }{2}}{cos30} \\OB= \frac{\frac{27\sqrt{3} }{2}}{\frac{\sqrt{3} }{2} } \\OB =27 \ cm[/tex]

Thus for

Perimeter of equilateral triangle ABC is 81/√3 centimeters,

The radius of equilateral triangle ABC is 27 cm

The apothem of equilateral triangle ABC is 13.5 cm

Ver imagen jitushashi123

Answer:

OB = 27 cm

Step-by-step explanation: