Respuesta :

Answer:

The value of Tan (a + b) is [tex]\frac{-220}{21}[/tex] .

Step-by-step explanation:

Given as :

Tan b = [tex]\frac{8}{15}[/tex]

Sin a = [tex]\frac{12}{13}[/tex]

∵Sin Ф = [tex]\dfrac{\textrm perpendicular}{\textrm Hypotenuse}[/tex]

So,  [tex]\dfrac{\textrm perpendicular}{\textrm Hypotenuse}[/tex] =  [tex]\frac{12}{13}[/tex]

Now, Base² = Hypotenuse² -  Perpendicular²

Or, Base² = 13² - 12²

Or,  Base² = 169 - 144

Or,  Base² = 25

∴     Base = [tex]\sqrt{25}[/tex] = 5

And Tan Ф =  [tex]\dfrac{\textrm perpendicular}{\textrm Base}[/tex]

Or, Tan a = [tex]\frac{12}{5}[/tex]

Now, Tan (a + b) = [tex]\dfrac{Tan a + Tan b}{1- Tan a Tanb}[/tex]

Or, Tan (a + b) = [tex]\frac{\frac{12}{5}+\frac{8}{5}}{1-(\frac{12}{5}\times \frac{8}{15})}[/tex]

or, Tan (a + b) = [tex]\frac{\frac{36+8}{15}}{\frac{75-96}{75}}[/tex]

or, Tan (a + b) =[tex]\frac{\frac{44}{15}}{\frac{-21}{75}}[/tex]

Or, Tan (a + b) = [tex]\frac{-220}{21}[/tex]

Hence The value of Tan (a + b) is [tex]\frac{-220}{21}[/tex] . Answer