Kinsey Corporation issues $100,000 of 8% bonds, due in 25 years, when the market rate of interest is 9%. Interest is paid semi annually on June 30 and December 31. The issue price of the bonds is:

a. $90,119
b. $90,177
c. $92,586
d. $100,000

Respuesta :

Answer:

Option a.

Explanation:

Given information:

Face value of bond = $100,000

Interest rate of bonds = 8%

Interest is paid semi annually, So the value of interest is

[tex]Interest=100000\times \frac{8}{1000}\times \frac{6}{12}=4000[/tex]

Market interest rate = 9%

Time = 25 years

Present value of annuity factor [tex]=\dfrac{1-(1+r)^{-n}}{r}[/tex]

                                                    [tex]=\dfrac{1-(1+0.045)^{-50}}{0.045}[/tex]

                                                     [tex]=19.7620089[/tex]

Present value factor [tex]=\dfrac{1}{(1+r)^{n}}[/tex]

                                  [tex]=\dfrac{1}{(1+0.045)^{50}}[/tex]

                                  [tex]0.11070965[/tex]

Value of bond = (Present value of annuity factor × interest payment) + (present value factor × face value)

Value of the bond [tex]=(19.7620089\times 4000)+(0.11070965\times 100,000)[/tex]

                               [tex]\approx 90,119[/tex]

The issue price of the bonds is $90,119.

Therefore, the correct option is a.