What is the value of the equilibrium constant at 25 oC for the reaction between the pair: Ag(s) and Ni2+(aq) to give Ni(s) and Ag+(aq) Use the reduction potential values for Ag+(aq) of +0.80 V and for Ni2+(aq) of -0.25 V Give your answer using E-notation with NO decimal places

Respuesta :

Answer: [tex]3\times 10^{35}[/tex]

Explanation:

The balanced chemical equation will be:

[tex]2Ag(s)+Ni^{2+}(aq)\rightarrow 2Ag^{+}(aq)+Ni(s)[/tex]

Here Ag undergoes oxidation by loss of electrons, thus act as anode. Nickel undergoes reduction by gain of electrons and thus act as cathode.

[tex]E^0=E^0_{cathode}- E^0_{anode}[/tex]

Where both [tex]E^0[/tex] are standard reduction potentials.

[tex]E^0_{[Ag^{+}/Mg]}=+0.80V[/tex]

[tex]E^0_{[Ni^{2+}/Ni]}=-0.25V[/tex]

[tex]E^0=E^0_{[Ni^{2+}/Ni]}- E^0_{[Ag^{+}/Ag]}[/tex]

[tex]E^0=-0.25-(+0.80V)=-1.05V[/tex]

The standard emf of a cell is related to Gibbs free energy by following relation:

[tex]\Delta G=-nFE^0[/tex]

[tex]\Delta G[/tex] = gibbs free energy  

n= no of electrons gained or lost  =?

F= faraday's constant

[tex]E^0[/tex] = standard emf

[tex]\Delta G=-2\times 96500\times (-1.05)=202650J[/tex]

The Gibbs free energy is related to equilibrium constant by following relation:

[tex]\Delta G=-2.303RTlog K[/tex]

R = gas constant = 8.314 J/Kmol

T = temperature in kelvin =[tex]25^0C=25+273=298K[/tex]

K = equilibrium constant

[tex]\Delta G=-2.303RTlog K[/tex]

[tex]+202650=-2.303\times 8.314\times 298\times logK[/tex]

[tex]K=3\times 10^{35}[/tex]

Thus the value of the equilibrium constant at [tex]25^0C[/tex] is [tex]3\times 10^{35}[/tex]