Answer:
Confidence interval: (1760,1956)
Step-by-step explanation:
We are given the following information in the question:
Sample size, n = 81
Sample mean =
[tex]\bar{x} = 1858 \text{ kWh}[/tex]
Population standard deviation =
[tex]\sigma = 450 \text{ kilowatt-hours}[/tex]
Confidence Level = 95%
Significance level = 5% = 0.05
Confidence interval:
[tex]\bar{x} \pm z_{critical}\displaystyle\frac{\sigma}{\sqrt{n}}[/tex]
Putting the values, we get,
[tex]z_{critical}\text{ at}~\alpha_{0.05} = \pm 1.96[/tex]
[tex]1858 \pm 1.96(\displaystyle\frac{450}{\sqrt{81}} ) = 1858 \pm 98 = (1760,1956)[/tex]