Respuesta :
Answer:
89.89 and 89.88
Step-by-step explanation:
Given function,
[tex]C(x) = 10000 + 90x + \frac{1200}{x}[/tex]
Where,
x = number of units manufactured,
Here, x = 100,
if h more items are produced then new number of units = 100 + h,
i.e. number of units ∈ [ 100, 100 + h]
If h = 10,
The number of units ∈ [100, 110],
Then the average cost per unit of manufacturing,
[tex]=\frac{C(110) - C(100)}{110 - 100}[/tex]
[tex]=\frac{10000 + 90(110) + \frac{1200}{110}-10000 - 90(100) - \frac{1200}{100}}{10}[/tex]
[tex]=\frac{900 + \frac{1200(100 - 110)}{11000}}{10}[/tex]
[tex]=\frac{900-\frac{12000}{11000}}{10}[/tex]
[tex]=\frac{9900000 - 12000}{110000}[/tex]
[tex]=\frac{9888000}{110000}[/tex]
≈ 89.89
If h = 1,
The number of units ∈ [100, 101],
Then the average cost per unit of manufacturing,
[tex]=\frac{C(101) - C(100)}{101 - 100}[/tex]
[tex]=\frac{10000 + 90(101) + \frac{1200}{101}-10000 - 90(100) - \frac{1200}{100}}{1}[/tex]
[tex]=90 + \frac{1200(100 - 101)}{11000}[/tex]
[tex]=90-\frac{1200}{11000}[/tex]
≈ 89.88