contestada

A plane monochromatic radio wave (λ = 0.3 m) travels in vacuum along the positive x-axis, with a time-averaged intensity I = 45 W/m2. Suppose at time t = 0, the electric field at the origin is measured to be directed along the positive y-axis with a magnitude equal to its maximum value. What is Bz, the magnetic field at the origin, at time t = 1.5 ns?

Respuesta :

Answer:

magnetic field =  - 6.137 × [tex]10^{-7}[/tex] T

Explanation:

given data

radio wave λ = 0.3 m

intensity I = 45 W/m²

time t = 0

time t = 1.5 ns

to find out

What is Bz

solution

we use here equation of intensity of radiation of electric field that is express as

intensity = [tex]\frac{1}{2}c\epsilon_oE_o^2[/tex]    .................1

here we know intensity 45 and c is 3 × [tex]10^{8}[/tex] m/s² and ∈o is 8.85  × [tex]10^{-12}[/tex] C²/N.m² and E will be here

E = [tex]\sqrt{\frac{2I}{c\epsilon_o} }[/tex]     ...............2

E = [tex]\sqrt{\frac{2*45}{3*10^8 * 8.85*10^{-12}}}[/tex]

E = 184.15

and

E = [tex]c*B_o[/tex]      .................3

184.15 =  [tex]3.*10^8*B_o[/tex]  

[tex]B_o[/tex] = 6.137 × [tex]10^{-7}[/tex] T

and in z axis magnetic field will be here as

B = [tex]B_o* cos(kx - \omega t )[/tex]      ..............4

here k = [tex]\frac{2\pi }{\lambda}[/tex]    

k =  [tex]\frac{2\pi }{0.3}[/tex] = 20.94

and

f =  [tex]\frac{c}{\lambda}[/tex]  

f = [tex]\frac{3*10^8}{0.3}[/tex] = [tex]10^{9}[/tex]        

so here

time t = [tex]\frac{1}{f}[/tex]      

t = [tex]\frac{1}{f}[/tex]   = [tex]10^{-9}[/tex]  

so ω = [tex]\frac{2\pi }{t}[/tex]

ω = [tex]\frac{2\pi }{10^{-9}}[/tex]

ω = 6.28 × [tex]10^{9}[/tex]

so now from equation 4

B = [tex]B_o* cos(kx - \omega t )[/tex]

B = [tex]6.137*10^{-7} *cos(0 - 6.28*10^9*(1.5*10^{-9})[/tex]

B =  - 6.137 × [tex]10^{-7}[/tex]

so magnetic field =  - 6.137 × [tex]10^{-7}[/tex] T