A sample of 20 cigarettes is tested to determine nicotine content and the average value observed was 1.2 mg. Compute a 99 percent two-sided confidence interval for the mean nicotine content of a cigarette if it is known that the standard deviation of a cigarette’s nicotine content is σ = .2 mg.

Respuesta :

Answer:  [tex]1.0848<\mu<1.3152[/tex]

Step-by-step explanation:

Confidence interval for population mean is given by :-

[tex]\overline{x}-z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}< mu< \overline{x}+ z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

, where [tex]z_{\alpha/2}[/tex] = two -tailed z-value for [tex]{\alpha[/tex] (significance level)

n= sample size .

[tex]\sigma[/tex] = Population standard deviation.

[tex]\overline{x}[/tex] = Sample mean

By considering the given information , we have

[tex]\sigma=0.2\text{ mg}[/tex]

[tex]\overline{x}=1.2\text{ mg}[/tex]

n= 20

[tex]\alpha=1-0.99=0.01[/tex]

Using z-value table ,

Two-tailed Critical z-value : [tex]z_{\alpha/2}=z_{0.005}=2.576[/tex]

The 99 percent two-sided confidence interval for the mean nicotine content of a cigarette will be :-

[tex]1.2- (2.576)\dfrac{0.2}{\sqrt{20}}<\mu<1.2+ (2.576)\dfrac{0.2}{\sqrt{20}}\\\\=1.2- 0.1152<\mu<1.2+ 0.1152\\\\=1.0848<\mu<1.3152 [/tex]

Hence, the 99 percent two-sided confidence interval for the mean nicotine content of a cigarette:  [tex]1.0848<\mu<1.3152[/tex]