Personnel selection. Suppose that 7 female and 5 male applicants have been successfully screened for 5 positions. If the 5 positions are filled at random from the 12 âfinalists, what is the probability of selecting â

(A) 3 females and 2â males? â
(B) 4 females and 1â male? â
(C) 5â females?
â(D) At least 4â females?

Respuesta :

Answer:

(A) 0.4419

(B) 0.2209

(C) 0.0265

(D)  0.2474

Step-by-step explanation:

Given,

Females = 7,

Males = 5,

Total candidates = 7 + 5 = 12,

The total ways of choosing any 5 candidates = [tex]^{12}C_5[/tex]

(A) Number of ways of choosing 3 females and 2 males = [tex]^7C_3\times ^5C_2[/tex]

Since,

[tex]\text{Probability}=\frac{\text{Favourable outcomes}}{\text{Total outcomes}}[/tex]

Thus, the probability of choosing 3 females and 2 males = [tex]\frac{ ^7C_3\times ^5C_2}{^{12}C_5}[/tex]

[tex]=\frac{\frac{7!}{3!4!}\times \frac{5!}{2!3!}}{\frac{12!}{5!7!}}[/tex]

[tex]=\frac{350}{792}[/tex]

[tex]=0.4419[/tex]

Similarly,

(B)

The probability of choosing 4 females and 1 male = [tex]\frac{ ^7C_4\times ^5C_1}{^{12}C_5}[/tex]

[tex]=\frac{\frac{7!}{4!3!}\times 5}{\frac{12!}{5!7!}}[/tex]

[tex]=\farc{35}{792}[/tex]

= 0.2209

(C)

The probability of choosing 5 females = [tex]\frac{ ^7C_5\times ^5C_0}{^{12}C_5}[/tex]

[tex]=\frac{\frac{7!}{5!2!}}{\frac{12!}{5!7!}}[/tex]

[tex]=\farc{21}{792}[/tex]

= 0.0265

(D)

The probability of choosing at least 4 females = [tex]\frac{ ^7C_4\times ^5C_1+^7C_5\times ^5C_0}{^{12}C_5}[/tex]

[tex]=\frac{\frac{7!}{4!3!}\times 5+\frac{7!}{5!2!}\times 1}{\frac{12!}{5!}{7!}}[/tex]

[tex]=\frac{196}{792}[/tex]

[tex]=0.2474[/tex]