You measure 44 textbooks' weights, and find they have a mean weight of 51 ounces. Assume the population standard deviation is 11.8 ounces. Based on this, construct a 95% confidence interval for the true population mean textbook weight. Give your answers as decimals, to two places

Respuesta :

Answer: (47.51, 54.49)

Step-by-step explanation:

Confidence interval for population mean is given by :-

[tex]\overline{x}\pm z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

, where n= sample size .

[tex]\sigma[/tex] = population standard deviation.

[tex]\overline{x}[/tex] = sample mean

[tex]z_{\alpha/2}[/tex] = Two -tailed z-value for [tex]{\alpha[/tex] (significance level)

As per given , we have

[tex]\sigma=11.8\text{ ounces}[/tex]

[tex]\overline{x}=51 \text{ ounces}[/tex]

n= 44

Significance level for 95% confidence = [tex]\alpha=1-0.95=0.05[/tex]

Using z-value table ,

Two-tailed Critical z-value : [tex]z_{\alpha/2}=z_{0.025}=1.96[/tex]

Now, the 95% confidence interval for the true population mean textbook weight will be :-

[tex]51\pm (1.96)\dfrac{11.8}{\sqrt{44}}\\\\=51\pm(1.96)(1.7789)\\\\=51\pm3.486644\approx51\pm3.49\\\\=(51-3.49,\ 51+3.49)\\\\=(47.51,\ 54.49) [/tex]

Hence, the 95% confidence interval for the true population mean textbook weight. :  (47.51, 54.49)