Calculate the Reynolds number for an oil gusher that shoots crude oil 25.0 m into the air through a pipe with a 0.100-m diameter. The vertical pipe is 50 m long. Take the density of the oil to be 900 kg/m3 and its viscosity to be 1.00 (N/m2)·s (or 1.00 Pa·s).

Respuesta :

Answer:

[tex]Re=1992.24[/tex]

Explanation:

Given:

vertical height of oil coming out of pipe, [tex]h=25\ m[/tex]

diameter of pipe, [tex]d=0.1\ m[/tex]

length of pipe, [tex]l=50\ m[/tex]

density of oil, [tex]\rho = 900\ kg.m^{-3}[/tex]

viscosity of oil, [tex]\mu=1\ Pa.s[/tex]

Now, since the oil is being shot verically upwards it will have some initial velocity and will have zero final velocity at the top.

Using the equation of motion:

[tex]v^2=u^2-2gh[/tex]

where:

v = final velocity

u = initial velocity

Putting the respective values:

[tex]0^2=u^2-2\times 9.8\times 25[/tex]

[tex]u=22.136\ m.s^{-1}[/tex]

For Reynold's no. we have the relation as:

[tex]Re=\frac{\rho.u.d}{\mu}[/tex]

[tex]Re=\frac{900\times 22.136\times 0.1}{1}[/tex]

[tex]Re=1992.24[/tex]