The normal freezing point of a certain liquid

X

is

0.4°C

, but when

5.90g

of urea

NH22CO

are dissolved in

450.g

of

X

, it is found that the solution freezes at

−0.5°C

instead. Use this information to calculate the molal freezing point depression constant

Kf

of

X

Respuesta :

Answer : The molal freezing point depression constant of X is [tex]4.12^oC/m[/tex]

Explanation :  Given,

Mass of urea (solute) = 5.90 g

Mass of X liquid (solvent) = 450.0 g

Molar mass of urea = 60 g/mole

Formula used :  

[tex]\Delta T_f=i\times K_f\times m\\\\T^o-T_s=i\times K_f\times\frac{\text{Mass of urea}\times 1000}{\text{Molar mass of urea}\times \text{Mass of X liquid}}[/tex]

where,

[tex]\Delta T_f[/tex] = change in freezing point

[tex]\Delta T_s[/tex] = freezing point of solution = [tex]-0.5^oC[/tex]

[tex]\Delta T^o[/tex] = freezing point of liquid X= [tex]0.4^oC[/tex]

i = Van't Hoff factor = 1  (for non-electrolyte)

[tex]K_f[/tex] = molal freezing point depression constant of X = ?

m = molality

Now put all the given values in this formula, we get

[tex][0.4-(-0.5)]^oC=1\times k_f\times \frac{5.90g\times 1000}{60g/mol\times 450.0g}[/tex]

[tex]k_f=4.12^oC/m[/tex]

Therefore, the molal freezing point depression constant of X is [tex]4.12^oC/m[/tex]