If [tex]sin\theta = \frac{1}{3}[/tex] , [tex]\frac{\pi }{2} \ \textless \ \theta \ \textless \ \pi[/tex]. Find the exact value of



[tex]sin (\theta + \frac{\pi }{6})[/tex]

Respuesta :

Answer:

- 0.183

Step-by-step explanation:

Given that [tex]\sin \theta = \frac{1}{3}[/tex]

and [tex]\frac{\pi }{2} < \theta  < \pi[/tex]

We have to find the exact value of [tex]\sin (\theta + \frac{\pi }{6} )[/tex].

Now, [tex]\sin \theta = \frac{1}{3}[/tex]

[tex]\theta = \sin ^{-1} (\frac{1}{3} ) = 19.47[/tex]

Now, since  [tex]\frac{\pi }{2} < \theta  < \pi[/tex],

So, [tex]\theta  = 180 - 19.47 = 160.53[/tex]

{Since [tex]\sin \theta = \sin (180 - \theta)[/tex]

Now, [tex]\theta + \frac{\pi }{6} = 160.53 + 30 = 190.52[/tex]

Hence, [tex]\sin (\theta + \frac{\pi }{6} )[/tex].

= [tex]\sin 190.52[/tex]

= - 0.183 (Approximate) (Answer)