contestada

A curve of radius 80 m is banked at 45 deg.
Suppose that an ice storm hits, and the curve is effectively frictionless.

What is the safe speed with which to take the curve without either sliding up or down?

Respuesta :

AMB000

Answer:

[tex]v=28m/s[/tex]

Explanation:

The vertical component of the normal force must cancel out with the weight of the car taking the curve:

[tex]N_y=W[/tex]

[tex]Ncos\theta=mg[/tex]

(Notice it has to be cos and not sin, because the angle [tex]\theta[/tex] is the slope, for null slope [tex]N_y=Ncos(0)=N[/tex], as it should be).

The horizontal component of the normal force must be the centripetal force, that is:

[tex]N_x=F_{cp}[/tex]

[tex]Nsen\theta=ma_{cp}[/tex]

[tex](\frac{mg}{cos\theta})sin\theta=m\frac{v^2}{r}[/tex]

[tex]gtan\theta=\frac{v^2}{r}[/tex]

[tex]v=\sqrt{grtan\theta}=\sqrt{(9.8m/s^2)(80m)tan(45^{\circ})}=28m/s[/tex]