Respuesta :
Answer:
B. H0: p1 − p2 ≤ 0; HA: p1 − p2 > 0
[tex]z=\frac{0.447-0.414}{\sqrt{0.431(1-0.431)(\frac{1}{150}+\frac{1}{140})}}=0.57[/tex]
[tex]z_{crit}=1.64[/tex]
A. Do not reject H0; there is no increase in the proportion of people using LinkedIn
Step-by-step explanation:
1) Data given and notation
[tex]X_{1}=67[/tex] represent the number of recent jobseekers
[tex]X_{2}=58[/tex] represent the number of job seekers three years ago.
[tex]n_{1}=150[/tex] sample of recent jobseekers selected
[tex]n_{2}=140[/tex] sample of job seekers three years ago selected
[tex]p_{1}=\frac{67}{150}=0.4468[/tex] represent the proportion of recent jobseekers
[tex]p_{2}=\frac{58}{140}=0.4143[/tex] represent the proportion of job seekers three years ago
z would represent the statistic (variable of interest)
[tex]p_v[/tex] represent the value for the test (variable of interest)
[tex]\alpha=0.05[/tex] significance level given
2) Concepts and formulas to use
We need to conduct a hypothesis in order to check if "More people are using social media to network, rather than phone calls or e-mails", the system of hypothesis would be:
Null hypothesis:[tex]p_{1} - p_{2} \leq 0[/tex]
Alternative hypothesis:[tex]p_{1} - p_{2} > 0[/tex]
We need to apply a z test to compare proportions, and the statistic is given by:
[tex]z=\frac{p_{1}-p_{2}}{\sqrt{\hat p (1-\hat p)(\frac{1}{n_{1}}+\frac{1}{n_{2}})}}[/tex] (1)
Where [tex]\hat p=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}=\frac{67+58}{150+140}=0.4310[/tex]
3) Calculate the statistic
Replacing in formula (1) the values obtained we got this:
[tex]z=\frac{0.4468-0.4143}{\sqrt{0.4310(1-0.4310)(\frac{1}{150}+\frac{1}{140})}}=0.5671[/tex]
In order to find the critical value since we have a right tailed test the we need to find a value on the z distribution that accumulates 0.05 of the area on the right tail, and this value is[tex]z_{crit}=1.64[/tex].
4) Statistical decision
Since is a right tailed test the p value would be:
[tex]p_v =P(Z>0.5671)= 0.285[/tex]
Comparing the p value with the significance level given [tex]\alpha=0.05[/tex] we see that [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis.
So the correct conclusion would be:
A. Do not reject H0; there is no increase in the proportion of people using LinkedIn