Respuesta :

r3t40

We have

[tex]f(x)=x^3-15x^2+50x[/tex].

To find zeros of this function we equate it with 0

[tex]x^3-15x^2+50x=0[/tex].

First we factor out x

[tex]x(x^2-15x+50)=0[/tex]

where we find that first zero is [tex]\boxed{x_1=0}[/tex].

Then we look at the expression in parentheses

[tex]x^2-15x+50=0[/tex]

using Viéts rule (factorisation)

[tex](x+a)(x+b)=x^2+x(a+b)+ab[/tex]

we can rewrite the equality

[tex](x-10)(x-5)=0[/tex].

If either of the terms is zero then the equality is true so we get two more zeros [tex]\boxed{x_2=10}[/tex] and [tex]\boxed{x_3=5}[/tex].

Hope this helps.