Answer: 13.6 N
Explanation:
The equation of motion for the rabbit is:
[tex]\Delta x=V_{ox}t+\frac{1}{2}a_{x}t^{2}[/tex] (1)
Where:
[tex]\Delta x=0.85 m[/tex] is the distance traveled by the rabbit
[tex]V_{ox}=0 m/s[/tex] is the rabbit's initial velocity, assuming it started from rest
[tex]t=0.5 s[/tex] is the time
[tex]a_{x}[/tex] is the acceleration
Isolating [tex]a_{x}[/tex]:
[tex]a_{x}=\frac{2 \Delta x}{t^{2}}[/tex] (2)
[tex]a_{x}=\frac{2 (0.85 m)}{(0.5)^{2}}[/tex] (3)
[tex]a_{x}=6.8 m/s^{2}[/tex] (4)
On the other hand, the force [tex]F_{x}[/tex] is given by:
[tex]F_{x}=m.a_{x}[/tex] (5)
Where [tex]m=2 kg[/tex] is the mass of the rabbit
Substituting (4) in (5):
[tex]F_{x}=(2 kg)(6.8 m/s^{2})[/tex] (6)
Finally:
[tex]F_{x}=13.6 N[/tex]