Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

If [tex]PX\cong PY,[/tex] then triangle PXY is isosceles triangle. Angles adjacent to the base XY of an isosceles triangle PXY are congruent, so

[tex]\angle 1\cong \angle 2[/tex]

and

[tex]m\angle 1=m\angle 2[/tex]

Angles 1 and 3 are supplementary, so

[tex]m\angle 3=180^{\circ}-m\angle 1[/tex]

Angles 2 and 4 are supplementary, so

[tex]m\angle 4=180^{\circ}-m\angle 2[/tex]

By substitution property,

[tex]m\angle 4=180^{\circ}-m\angle 2=180^{\circ}-m\angle 1=m\angle 3[/tex]

Hence,

[tex]\angle 3\cong \angle 4[/tex]

Consider triangles APX and BPY. In these triangles:

  • [tex]PX\cong PY[/tex] - given;
  • [tex]\angle 5\cong \angle 6[/tex] - given;
  • [tex]\angle 3\cong \angle 4[/tex] - proven,

so [tex]\triangle APX\cong \triangle BPY[/tex] by ASA postulate.

Congruent triangles have congruent corresponding sides, then

[tex]AP\cong BP[/tex]

Therefore, triangle APB is isosceles triangle (by definition).