Respuesta :

Answer:

Step-by-step explanation:

The general form of a quadratic equation is

ax^2 + b^2 + c

The given quadratic equation is

4x^2 - 30x + 45 = 0.

To find the solutions, we will apply the general formula for solving quadratic equations. It is expressed as

x = [-b ±√(b^2 - 4ac)]/2a

From the given quadratic equation,

a = 4

b = - 30

c = 45

Therefore,

x = [- - 30 ±√(- 30^2 - 4 × 4 × 45)]/2×4

x = [30 ±√(900 - 768)]/8

x = [30 ±√132]/8

x = [30 ± 11.5]/8

x = [30 + 11.5]/8 or x = [30 - 11.5]/8

x = 41.5/8 or x = 18.5/8

x = 5.1875 or x = 2.3125

Answer:

5.43 , 2.07

Step-by-step explanation:

The given quadratic equation is

[tex]\[4x^{2}-30x+45=0\] [/tex]

This is of the form [tex]\[ax^{2}+bx+c=0\][/tex]

where,

a=4

b=-30

c=45

Roots of the quadratic equation of this form are given by:

[tex]\[\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\][/tex]

Substituting the values of a,b,c in the formula:

[tex]\[\frac{-(-30)\pm \sqrt{(-30)^{2}-4*4*45}}{2*4}\][/tex]

=[tex]\[\frac{30\pm \sqrt{900-720}}{8}\][/tex]

=[tex]\[\frac{30\pm \sqrt{900-720}}{8}\][/tex]

=[tex]\[\frac{30\pm \sqrt{180}}{8}\][/tex]

=[tex]\[\frac{30\pm 13.416}{8}\][/tex]

=5.43,2.07