Respuesta :
Answer:
Step-by-step explanation:
The general form of a quadratic equation is
ax^2 + b^2 + c
The given quadratic equation is
4x^2 - 30x + 45 = 0.
To find the solutions, we will apply the general formula for solving quadratic equations. It is expressed as
x = [-b ±√(b^2 - 4ac)]/2a
From the given quadratic equation,
a = 4
b = - 30
c = 45
Therefore,
x = [- - 30 ±√(- 30^2 - 4 × 4 × 45)]/2×4
x = [30 ±√(900 - 768)]/8
x = [30 ±√132]/8
x = [30 ± 11.5]/8
x = [30 + 11.5]/8 or x = [30 - 11.5]/8
x = 41.5/8 or x = 18.5/8
x = 5.1875 or x = 2.3125
Answer:
5.43 , 2.07
Step-by-step explanation:
The given quadratic equation is
[tex]\[4x^{2}-30x+45=0\] [/tex]
This is of the form [tex]\[ax^{2}+bx+c=0\][/tex]
where,
a=4
b=-30
c=45
Roots of the quadratic equation of this form are given by:
[tex]\[\frac{-b\pm \sqrt{b^{2}-4ac}}{2a}\][/tex]
Substituting the values of a,b,c in the formula:
[tex]\[\frac{-(-30)\pm \sqrt{(-30)^{2}-4*4*45}}{2*4}\][/tex]
=[tex]\[\frac{30\pm \sqrt{900-720}}{8}\][/tex]
=[tex]\[\frac{30\pm \sqrt{900-720}}{8}\][/tex]
=[tex]\[\frac{30\pm \sqrt{180}}{8}\][/tex]
=[tex]\[\frac{30\pm 13.416}{8}\][/tex]
=5.43,2.07