Respuesta :

Answer:

Tan C = 3/4

Step-by-step explanation:

Given-

∠ A = 90°, sin C = 3 / 5

METHOD - I

Sin² C + Cos² C = 1

Cos² C = 1 - Sin² C

Cos² C = [tex]1 - \frac{9}{25}[/tex]

Cos² C = [tex]\frac{25 - 9}{25}[/tex]

Cos² C = [tex]\frac{16}{25}[/tex]

Cos C = [tex]\sqrt{\frac{16}{25} }[/tex]

Cos C = [tex]\frac{4}{5}[/tex]

As we know that

Tan C = [tex]\frac{Sin C}{Cos C }[/tex]

Tan C = [tex]\frac{\frac{3}{5} }{\frac{4}{5} }[/tex]

Tan C = [tex]\frac{3}{4}[/tex]

METHOD - II

Given Sin C = [tex]\frac{3}{5} = \frac{Height}{Hypotenuse}[/tex]

therefore,  

AB ( Height ) = 3; BC ( Hypotenuse) = 5

∵ ΔABC is Right triangle.

∴ By Pythagorean Theorem-

AB² + AC² = BC²

AC² = BC² - AB²

AC² = 5² - 3²

AC² = 25 - 9

AC² = 16

AC  ( Base) = 4

Since,

Tan C = [tex]\frac{Height}{Base}[/tex]

Tan C = [tex]\frac{AB}{AC}[/tex]

Hence Tan C = [tex]\frac{3}{4}[/tex]