Respuesta :

Answer:

Option C. [tex]y=-\sqrt{x-5}+3[/tex]

Step-by-step explanation:

The complete question in the attached figure

Remember that

The domain of the function are all possible values for variable x and the range of the function are all possible values for the variable y

Case A) we have

[tex]y=\sqrt{x-5}+3[/tex]

Remember that the discriminant must be greater than or equal to zero

For domain of this function

[tex](x - 5)\geq0\\x\geq5[/tex]

For range of the function

for every value of x ≥ 0

[tex]y\geq3[/tex]

Case B) we have

[tex]y=\sqrt{x+5}-3[/tex]

Remember that the discriminant must be greater than or equal to zero

For Domain

[tex](x + 5) \geq0\\x \geq(-5)[/tex]

and for every value of x ≥ (-5) range of the function will be

[tex]y \geq (-3)[/tex]

Case C) we have

[tex]y=-\sqrt{x-5}+3[/tex]

Remember that the discriminant must be greater than or equal to zero

For domain

[tex]x - 5 \geq 0\\x\geq 5[/tex]

For range

[tex]y \leq 3[/tex]

Case D) we have

[tex]y=-\sqrt{x+5}-3[/tex]

Remember that the discriminant must be greater than or equal to zero

For domain

[tex](x + 5) \geq 0\\x \geq -5[/tex]

For range

[tex]y \leq (-3)[/tex]

Ver imagen calculista

Answer:

c is the answer

Step-by-step explanation: