Using the quadratic formula to solve 11x2 – 4x = 1, what are the values of x? StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction StartRoot 15 EndRoot Over 11 EndFraction StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction 2 StartRoot 15 EndRoot Over 11 EndFraction StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction StartRoot 7 EndRoot Over 11 EndFraction StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction StartRoot 7 EndRoot i Over 11 EndFraction

Respuesta :

Answer:

[tex]x=\frac{2}{11}\pm\frac{\sqrt{15}} {11}[/tex]

Step-by-step explanation:

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]11x^{2} -4x=1[/tex]  

equate to zero

[tex]11x^{2} -4x-1=0[/tex]  

so

[tex]a=11\\b=-4\\c=-1[/tex]

substitute in the formula

[tex]x=\frac{-(-4)\pm\sqrt{-4^{2}-4(11)(-1)}} {2(11)}[/tex]

[tex]x=\frac{4\pm\sqrt{60}} {22}[/tex]

[tex]x=\frac{4\pm2\sqrt{15}} {22}[/tex]

[tex]x=\frac{2\pm\sqrt{15}} {11}[/tex]

[tex]x=\frac{2}{11}\pm\frac{\sqrt{15}} {11}[/tex]

therefore

StartFraction 2 Over 11 EndFraction plus-or-minus StartFraction StartRoot 15 EndRoot Over 11 EndFraction

Answer:

a on edg

Step-by-step explanation:

took the test