Answer:
3.06 x 10^{-5} N
Explanation:
mass M1 = 191 kg
mass M2 = 572 kg
mass M3 = 50 kg
distance apart (d) = 0.406 m
gravitational constant (G) = 6.62 x 10^{-11} m^{2}/kg^{2}
Find the magnitude of the net gravitational force exerted by the two larger masses on the 50 kg mas
the net gravitational force acting on the 50 kg mass (M3) = gravitational force exerted by the larger mass (M2) - gravitational force exerted by the smaller mass (M1)
⇒[tex]\frac{GM2.M3}{y^{2}} -\frac{GM1.M3}{y1^{2}}[/tex]
net force = [tex](GM3)(\frac{M2}{y^{2}} -\frac{M1}{y1^{2}})[/tex]
net force = [tex](6.62 x 10^{-11} x 50)(\frac{572}{0.203^{2}} -\frac{191}{0.203^{2}})[/tex]
net force = [tex](6.62 x 10^{-11} x 50)(13880.5 - 4634.9)[/tex]
net force = 3.06 x 10^{-5} N