Respuesta :

Answer:

[tex]BC=4\sqrt{5}\ units[/tex]

Step-by-step explanation:

see the attached figure with letters to better understand the problem

step 1

In the right triangle ACD

Find the length side AC

Applying the Pythagorean Theorem

[tex]AC^2=AD^2+DC^2[/tex]

substitute the given values

[tex]AC^2=16^2+8^2[/tex]

[tex]AC^2=320[/tex]

[tex]AC=\sqrt{320}\ units[/tex]

simplify

[tex]AC=8\sqrt{5}\ units[/tex]

step 2

In the right triangle ACD

Find the cosine of angle CAD

[tex]cos(\angle CAD)=\frac{AD}{AC}[/tex]

substitute the given values

[tex]cos(\angle CAD)=\frac{16}{8\sqrt{5}}[/tex]

[tex]cos(\angle CAD)=\frac{2}{\sqrt{5}}[/tex] ----> equation A

step 3

In the right triangle ABC

Find the cosine of angle BAC

[tex]cos(\angle BAC)=\frac{AC}{AB}[/tex]

substitute the given values

[tex]cos(\angle BAC)=\frac{8\sqrt{5}}{16+x}[/tex] ----> equation B

step 4

Find the value of x

In this problem

[tex]\angle CAD=\angle BAC[/tex] ----> is the same angle

so

equate equation A and equation B

[tex]\frac{8\sqrt{5}}{16+x}=\frac{2}{\sqrt{5}}[/tex]

solve for x

Multiply in cross

[tex](8\sqrt{5})(\sqrt{5})=(16+x)(2)\\\\40=32+2x\\\\2x=40-32\\\\2x=8\\\\x=4\ units[/tex]

[tex]DB=4\ units[/tex]

step 5

Find the length of BC

In the right triangle BCD

Applying the Pythagorean Theorem

[tex]BC^2=DC^2+DB^2[/tex]

substitute the given values

[tex]BC^2=8^2+4^2[/tex]

[tex]BC^2=80[/tex]

[tex]BC=\sqrt{80}\ units[/tex]

simplify

[tex]BC=4\sqrt{5}\ units[/tex]

Ver imagen calculista