Answer:
[tex]I=\frac{13}{15} =0.867\ kg.m^2[/tex]
Explanation:
Given:
We know, moment of inertia from its basic definition:
[tex]I=\int\limits^x_{x_0} {x^2}\lambda \, dx[/tex]
[tex]I=\int\limits^1_0 {x^2}(2+x^2) \, dx[/tex]
[tex]I=\int\limits^1_0 (2x^2+x^4) \, dx[/tex]
[tex]I=[\frac{2}{3} x^3+\frac{x^5}{5} ]\limi_0^1[/tex]
[tex]I=\frac{13}{15} =0.867\ kg.m^2[/tex]