Respuesta :
Answer:
The angular acceleration of the rod is 2 rad/s².
(a) is correct option.
Explanation:
Given that,
Mass of string = 5.00 kg
Radius = 0.100 m
Mass of disk = 125 kg
Radius of disk = 0.2 m
We need to calculate the acceleration
Using balance equation
[tex]mg-T=ma[/tex]
Put the value of m
[tex]5g-T=5a[/tex]....(I)
We need to calculate the tension
Using balance equation
[tex]T\times r=I\times \alpha[/tex]
[tex]T=\dfrac{I\times\alpha}{r}[/tex]
[tex]T=\dfrac{\dfrac{mr^2}{2}\times\alpha}{r}[/tex]
[tex]T=\dfrac{\dfrac{mr^2}{2}\times\dfrac{v}{r}}{r}[/tex]
Put the value into the formula
[tex]T=\dfrac{\dfrac{125\times(0.2)^2}{2}\times a}{(0.1)^2}[/tex]
[tex]T=250a[/tex]....(II)
From equation (I) and (II)
[tex]255a=5g[/tex]
Put the value into the formula
[tex]a=\dfrac{5\times9.8}{255}[/tex]
[tex]a=0.2\ m/s^2[/tex]
We need to calculate the angular acceleration of the rod
Using formula of angular acceleration
[tex]\alpha=\dfrac{a}{R}[/tex]
Put the value into the formula
[tex]\alpha=\dfrac{0.2}{0.1}[/tex]
[tex]\alpha=2\ rad/s^2[/tex]
Hence, The angular acceleration of the rod is 2 rad/s².