Answer:
v₂ = 17.98 m/s
Explanation:
given,
mass of ball = m = 4.6 Kg
length of string = L = 6.6 m
force acting toward the center is equal to the force exerted by centripetal acceleration
[tex]m g = \dfrac{mv_1^2}{r}[/tex]
[tex]v_1 = \sqrt{gr}[/tex]
now, calculating the speed of ball at the bottom of the circlr
work done by the gravity = change in kinetic energy
[tex]- m g (2R) = \dfrac{1}{2}m(v_1^2-v_2^2)[/tex]
[tex]-4 gR =v_1^2-v_2^2[/tex]
[tex]-4 gR =g R-v_2^2[/tex]
[tex]v_2^2 = 5 g R[/tex]
[tex]v_2=\sqrt{5\times 9.8 \times 6.6}[/tex]
v₂ = 17.98 m/s