For a damped simple harmonic oscillator, the block has a mass of 1.2 kg and the spring constant is 9.8 N/m. The damping force is given by -b(dx/dt), where b = 210 g/s. The block is pulled down 13.0 cm and released. (a) Calculate the time required for the amplitude of the resulting oscillations to fall to 1/8 of its initial value. (b) How many oscillations are made by the block in this time?

Respuesta :

Answer:

a) t=24s

b) number of oscillations= 11

Explanation:

In case of a damped simple harmonic oscillator the equation of motion is

m(d²x/dt²)+b(dx/dt)+kx=0

Therefore on solving the above differential equation we get,

x(t)=A₀[tex]e^{\frac{-bt}{2m}}cos(w't+\phi)=A(t)cos(w't+\phi)[/tex]

where A(t)=A₀[tex]e^{\frac{-bt}{2m}}[/tex]

 A₀ is the amplitude at t=0 and

[tex]w'[/tex] is the angular frequency of damped SHM, which is given by,

[tex]w'=\sqrt{\frac{k}{m}-\frac{b^{2}}{4m^{2}} }[/tex]

Now coming to the problem,

Given: m=1.2 kg

           k=9.8 N/m

           b=210 g/s= 0.21 kg/s

           A₀=13 cm

a) A(t)=A₀/8

⇒A₀[tex]e^{\frac{-bt}{2m}}[/tex] =A₀/8

⇒[tex]e^{\frac{bt}{2m}}=8[/tex]

applying logarithm on both sides

⇒[tex]\frac{bt}{2m}=ln(8)[/tex]

⇒[tex]t=\frac{2m*ln(8)}{b}[/tex]

substituting the values

[tex]t=\frac{2*1.2*ln(8)}{0.21}=24s(approx)[/tex]

b) [tex]w'=\sqrt{\frac{k}{m}-\frac{b^{2}}{4m^{2}} }[/tex]

[tex]w'=\sqrt{\frac{9.8}{1.2}-\frac{0.21^{2}}{4*1.2^{2}}}=2.86s^{-1}[/tex]

[tex]T'=\frac{2\pi}{w'}[/tex], where [tex]T'[/tex] is time period of damped SHM

⇒[tex]T'=\frac{2\pi}{2.86}=2.2s[/tex]

let [tex]n[/tex] be number of oscillations made

then, [tex]nT'=t[/tex]

⇒[tex]n=\frac{24}{2.2}=11(approx)[/tex]