Answer:
Perimeter = 27 units
Area = 37.5 sq. units
Step-by-step explanation:
We have to find the length of all the sides to determine what kind of quadrilateral this is.
Length of AB = [tex]\sqrt{(-10+7)^{2}+(5-1)^{2}} = \sqrt{9+16} =\sqrt{25}= 5[/tex]
Length of BC = [tex]\sqrt{8^{2}+6^{2}} = 10[/tex]
Length of CD = [tex]\sqrt{7^{2}+1^{2}}[/tex] = 5[tex]\sqrt{2}[/tex]
Length of DA =[tex]\sqrt{4^{2}+3^{2}}[/tex]= 5
The shape is a quadrilateral.
To find the perimeter sum the length of all the sides,
PERIMETER = 5+10+5[tex]\sqrt{2}[/tex]+5 =27 units
We can find area by finding areas of triangles separately.
Area of ΔABC = 25 sq. units
Area of ΔACD = 12.5 sq. units
Area of quadrilateral= 25 + 12.5 = 37.5 sq. units