Respuesta :

The equation of [tex]f^{-1}(x)[/tex] is [tex]f^{-1}(x)=\frac{1}{2}x+\frac{7}{2}[/tex]

Step-by-step explanation:

How to find the inverse of a function:

  • First, replace f(x) with y
  • Replace every x with a y and replace every y with an x  
  • Solve the equation from Step 2 for y
  • Replace y with [tex]f^{-1}(x)[/tex]

∵ f(x) = 2x - 7

- Replace f(x) by y

∴ y = 2x - 7

- Replace x by y and y by x

∴ x = 2y - 7

- Let us solve to find y

- Add 7 to both sides

∴ x + 7 = 2y

- Divide each term in two sides by 2

∴ [tex]\frac{x}{2}+\frac{7}{2}=y[/tex]

- Switch the two sides

∴ [tex]y=\frac{x}{2}+\frac{7}{2}[/tex]

- Write [tex]\frac{x}{2}[/tex] as [tex]\frac{1}{2}x[/tex]

∴ [tex]y=\frac{1}{2}x+\frac{7}{2}[/tex]

- Replace y by [tex]f^{-1}(x)[/tex]

∴ [tex]f^{-1}(x)=\frac{1}{2}x+\frac{7}{2}[/tex]

The equation of [tex]f^{-1}(x)[/tex] is [tex]f^{-1}(x)=\frac{1}{2}x+\frac{7}{2}[/tex]

Learn more:

You can learn more about the inverse function in brainly.com/question/1632445

#LearnwithBrainly