Answer:
$1263
Explanation:
Given: Beginning inventory 10 units at $55
First purchase 25 units at $60
Second purchase 30 units at $65
Third purchase 15 units at $70.
First, finding Total cost of available inventory to know weighted average cost.
Total cost= [tex]Units\ available \times cost\ per\ unit[/tex]
∴ Beginning inventory= [tex]10\ units\times \$ 55= \$ 550[/tex]
First purchase= [tex]25\ units\times \$ 60= \$ 1500[/tex]
Second purchase= [tex]30\ units\times \$ 65= \$ 1950[/tex]
Third purchase = [tex]15\ units\times \$ 70= \$ 1050[/tex].
Total units available for sale= [tex]10+25+30+15= 80\ units[/tex]
Total cost of available inventory= [tex]\$550+\$ 1500+ \$ 1950+\$ 1050= \$ 5050[/tex]
Now, finding Weighted average cost.
Weighted average cost= [tex]\frac{Total\ cost\ of\ available\ inventory}{Total\ units}[/tex]
Weighted average cost= [tex]\frac{\$ 5050}{80\ units} = \$ 63.125.[/tex]
∴ Weighted average cost= $ 63.125.
As given, 60 units sold during the year, which mean 20 units is still remaining out of total 80 units.
The value of ending inventory= [tex]units\ remaining\times Weighted \ average\ cost[/tex]
∴ The value of ending inventory= [tex]20\ units \times \$ 63.125= \$ 1262.5 \approx \$ 1263[/tex]
∴ The value of ending inventory using average cost is $1263