What are the period and vertical shift of the cosecant function below?

Answer is D period: 4 pi; vertical shift: 2 units up

Respuesta :

Answer:

[tex]y=acsc(bx-c)+d\\y=csc(\frac{1}{2}x)+2\\P=\frac{2\pi}{b}\Rightarrow P=\frac{2\pi}{\frac{1}{2}} \Rightarrow P = 2\pi*2 \Rightarrow P=4\pi\\d=2[/tex]

Step-by-step explanation:

The trigonometric functions have some features like amplitude, period, phase shift, and vertical shift.

Retrieving the original cosecant graph and copying and attaching it below we have this function:

[tex]y=cosec(\frac{1}{2})x+2[/tex]

1) Period

Since the period of a basic secant and basic sine function [tex]2\pi[/tex]

[tex]y=acsc(bx-c)+d\\y=csc(\frac{1}{2}x)+2\\P=\frac{2\pi}{b}\Rightarrow P=\frac{2\pi}{\frac{1}{2}} \Rightarrow P = 2\pi*2 \Rightarrow P=4\pi[/tex]

2) Vertical Shift

This value affects the graph by displacing it from x-axis.

The Vertical Shift does not need calculation for it is given by the parameter "d"

[tex]y=acsc(bx-c)+d\\y=csc(\frac{1}{2}x)+2\\ d=2 \: (Vertical\:Shift)[/tex]

Ver imagen profantoniofonte

Answer:

He is right is D

Step-by-step explanation: