The volume of a sphere is increasing at a rate of 25\pi25π25, pi cubic meters per hour. At a certain instant, the volume is \dfrac{32\pi}{3} 3 32π ​ start fraction, 32, pi, divided by, 3, end fraction cubic meters.

Respuesta :

Answer:

[tex]\dfrac{dA}{dt}=25\pi[/tex]

Explanation:

given,

rate of increase of volume of sphere = 25π m³/h

volume at certain time = [tex]\dfrac{32\pi}{3}[/tex]

calculate the rate of change of surface area = ?

volume of sphere

[tex]V = \dfrac{4}{3}\pi r^3[/tex]

[tex]\dfrac{32\pi}{3} = \dfrac{4}{3}\pi r^3[/tex]

    r³ = 8

    r = 2 m

surface are of the sphere

 A = 4 π r²

[tex]\dfrac{dA}{dr}=\dfrac{d}{dr}(4\pi r^2)[/tex]

[tex]\dfrac{dA}{dr}=8\pi r[/tex]

[tex]\dfrac{dV}{dr}=\dfrac{d}{dr}(\dfrac{4}{3}\pi r^3)[/tex]

[tex]\dfrac{dA}{dr}=4\pi r^2[/tex]

now,

[tex]\dfrac{dA}{dt}=\dfrac{dA}{dr}\dfrac{dr}{dV}\dfrac{dV}{dt}[/tex]

[tex]\dfrac{dA}{dt}=8\pi r \dfrac{1}{4\pi r^2}\dfrac{dV}{dt}[/tex]

[tex]\dfrac{dA}{dt}=\dfrac{2}{r}\dfrac{dV}{dt}[/tex]

[tex]\dfrac{dA}{dt}=\dfrac{2}{2}\times (25\pi)[/tex]

[tex]\dfrac{dA}{dt}=25\pi[/tex]