Iodine-131, t1/2 = 8.0 days, is used in diagnosis and treatment of thyroid gland diseases. If a laboratory sample of iodine-131 initially emits 9.95 × 1018 β particles per day, how long will it take for the activity to drop to 6.22 × 1017 β particles per day?

Respuesta :

Explanation:

Formula for the first order decay is as follows.

          [tex]ln(\frac{A}{A_{o}})[/tex] = -kt

where,    A = activity at time t

          [tex]A_{o}[/tex] = initial activity

                k = decay constant

Hence, putting the given values into the above formula as follows.

                 k = [tex]\frac{ln(2)}{\text{half life}}[/tex]

                    = [tex]\frac{ln(2)}{8.0}[/tex]

                    = 0.086643 per day

Also,    [tex]\frac{ln(6.22 \times 10^{17})}{9.95 \times 10^{8}} = -0.086643 \times t[/tex]

                        t = 32 days

Thus, we can conclude that it will take 32 days for the activity to drop to [tex]6.22 \times 10^{17}[/tex] [tex]\beta[/tex] particles per day.