Suppose a heat engine is connected to two energy reservoirs,one a pool of molten aluminum at 660°C and the other a block ofsolid mercury at -38.9°C. The engine runs by freezing 3.00 g ofaluminum and melting 45.0 g of mercury during each cycle. Thelatent heat of fusion of aluminum is 3.97 105 J/kg, and thatof mercury is 1.18 104 J/kg.
(a) What is the efficiency of this engine?
_________%
(b) How does the efficiency compare with that of a Carnotengine?
_________%

Respuesta :

Answer:

a) [tex]\eta=0.9998\ or\ 99.98\%[/tex]

b) [tex]\eta_c=0.7490\ or\ 74.9\% [/tex]

[tex]\rm \eta>\eta_c\ is\ not\ possible[/tex]

Explanation:

Given:

  • temperature of source reservoir, [tex]T_H=660+273=933\ K[/tex]
  • temperature of sink reservoir,  [tex]T_L=-38.9+273=234.1\ K[/tex]
  • quantity of aluminium frozen by the engine during 1 cycle,  [tex]m_a=0.003\ kg[/tex]
  • quantity of mercury melted by the engine during 1 cycle,  [tex]m_m=0.045\ kg[/tex]
  • latent heat of fusion of aluminium, [tex]L_a=3.97\times 10^5\ J.kg^{-1}[/tex]
  • latent heat of fusion of mercury, [tex]L_m=1.18\times 10^4\ J.kg^{-1}[/tex]

a)

Heat absorbed by the engine:

[tex]Q_H=m_a.L_a[/tex]

[tex]Q_H=0.045\times (3.97\times 10^{5})[/tex]

[tex]Q_H=178650\ J[/tex]

Heat rejected by the engine:

[tex]Q_L=m_m.L_m[/tex]

[tex]Q_L=0.003\times (1.18\times 10^{4})[/tex]

[tex]Q_L=35.4\ J[/tex]

Now the efficiency of the engine:

[tex]\eta=\frac{Q_H-Q_L}{Q_H}[/tex]

[tex]\eta=\frac{178650-35.4}{178650}[/tex]

[tex]\eta=0.9998\ or\ 99.98\%[/tex]

b)

Now the Carnot efficiency of the engine:

[tex]\eta_c=1-\frac{T_L}{T_H}[/tex]

[tex]\eta_c=1-\frac{234.1}{933}[/tex]

[tex]\eta_c=0.7490\ or\ 74.9\% [/tex]

[tex]\rm \eta>\eta_c\ is\ not\ possible[/tex]